
Sundance Multiprocessor Technology Limited Product Specification Form : QCF54
Template Date : 5 November 2014

Systems Product Manual EMC² Last Edited: 05/07/2016 12:49:00

Product Name: EMC²
Subsystem: EMC²
Product Number: EMC²
Document Issue Number: 1
Issue Date: 29 June 2016
Original Author: E. Wheatley

EMC²
System Manual

Sundance Multiprocessor Technology Ltd, Chiltern House,
Waterside, Chesham, Bucks. HP5 1PS.

This document is the property of Sundance and may not be copied
nor communicated to a third party without prior written

permission.
© Sundance Multiprocessor Technology Limited 2009

Systems Product Manual EMC² Page 2 of 19 Last Edited: 05/07/2016 12:49:00

Revision History

Issue Changes Made Date Initials
1 Original 16/6/2016 EW
2 Changed PC IP address. Updated the screen shot of

the GUI. Added the output resolution and the
video and resolution settings.

29/6/2016 EW

3 More details added 05/7/2016 EW

Systems Product Manual EMC² Page 3 of 19 Last Edited: 05/07/2016 12:49:00

Table of Contents
1 EMC² System Overview ... 4
2 System Data Flows .. 5

2.1 Firmware .. 5
2.2 UDP server ... 9
2.3 Petalinux .. 9
2.4 UDP Client ... 9

3 Software/firmware installation ... 10
4 Running the demo .. 11

4.1 Hardware ... 11
4.1.1 Hardware requirement .. 11
4.1.2 Hardware setup ... 12

4.2 Software ... 12
5 Building the demo ... 16

5.1 Platform hardware .. 16
5.2 Firmware .. 16
5.3 MicroBlaze application and UDP server ... 17
5.4 Boot.bin .. 17
5.5 Petalinux .. 18
5.6 Uboot environment ... 19

6 References .. 19

Table of Figures
Figure 1: System data flow ... 5
Figure 2: Registers .. 6
Figure 3: MicroBlaze commands ... 7
Figure 4: HDMI setup registers.. 8
Figure 5: Installation structure ... 11
Figure 6: Hardware setup ... 12
Figure 7: Serial console settings ... 13
Figure 8: UDP client running .. 14
Figure 9: UDP server running .. 15
Figure 10: Demo running .. 16

Systems Product Manual EMC² Page 4 of 19 Last Edited: 05/07/2016 12:49:00

1 EMC² System Overview
The demonstration runs on a stand-alone EMC² Development Platform which is a PCIe/104 OneBank™ board with dual ARM9 CPU, a reconfigurable FPGA Logic and
an interface to CPU specific I/O features. The EMC² is a carrier board for a Trenz
compatible SoC module.
In this system, the EMC² Development Platform is controlled by a Graphical User
Interface host application over an Ethernet connection for live video. The Ethernet
interface is made available on an add-on board called SEIC (Sundance External
Interface Connector).
The purpose of this demo is to allow real-life data, in this case a video-stream from
a HDMI Output to be loaded into the Zynq’s DDR memory and then displayed again
on a second HDMI-Input device (typically a monitor). In this example, a Xilinx 32-bit
MicroBlaze CPU controls the transfer of data between the HDMI input, the DDR3
memory and the HDMI output.

In this demonstration, a VITA57.1 FMC® compatible Daughter Card is plugged to the
EMC²-DP to provide HDMI input/output capabilities. The input video is stored to
DDR3 memory and the output video is read from DDR3 memory. A MicroBlaze 32-
bit soft-core processor is implemented in the Zynq PL to control the HDMI interface
to have access to the DDR3 memory and the video data for processing.
The data are stored in the DDR memory in 3 buffers arranged in a circular manner.
The input and output HDMI rate are identical.
The memory read and write are alternated to provide data for HDMI output while
storing the HDMI input data. The memory read is performed ahead of the memory
write.
The GUI host application controls the EMC²-DP via the 1GB Ethernet port using a
write/read API. The Ethernet link is used to communicate with the ARM processor core running Linux that, in turn, communicates with the MicroBlaze processor to
configure the system and drive its memory accesses remotely.
The host application can also provide any data to write to memory to be processed
and then read it back.
For example, it can load a picture to display on the HDMI output and read a picture
captured on the HDMI input.

A UDP server runs in Linux on the PS and the host application runs the UDP client.
The MicroBlaze controls the VDMA IP core to perform the read and write operations
requested by the host. The EMC²-DP boots from SD card so the application code
runs at power up and could be used to configure the system from Ethernet.
From the graphic interface, the control commands can be sent manually. But more
efficiently, the host application can load a set of commands from an xml file and
send it to the system. Typically, a set of commands will be:
 Read from memory (with the option to display data in the GUI and/ or save it to

a file),
 write to memory (the data can be manually entered or come from a file),
 Sleep.

Systems Product Manual EMC² Page 5 of 19 Last Edited: 05/07/2016 12:49:00

An XML command file can also be created or modified from the graphic interface.
The use of XML files facilitates the system configuration but also makes it easier
and quicker to repeat operations like running full system tests. Therefore, the
system is very flexible and can be controlled remotely using the Ethernet port.

2 System Data Flows
The embedded system operates under the control of a windows GUI by sending
commands to start the acquisition on the HDMI input and display data on the HDMI
output.
Thus this system consists of 4 main software/firmware parts: The firmware for the Zynq PL (Programmable Logic) The UDP server on the Zynq PS (Processing System) The Petalinux project to run Linux on the Zynq. The UDP client in shape of a GUI in Windows.

The figure below illustrates the system data flow.

1. The UDP Client sends a request to the UDP server via Ethernet.
2. The UDP server relays the request to the MIcroBlaze.
3. The MicroBlaze controls the VDMA IP core to perform the request.
4. The VDMA IP core initializes and setups the HDMI input and output according to

the MicroBlaze’s commands.
5. The result of the request is sent back to the UDP Client.

2.1 Firmware
The firmware was created with the IP integrator in Vivado. The firmware is
assembled from standard Xilinx IP and Avnet FMC_Imageon IP.

Figure 1: System data flow

Screen

EMC² SEIC

VITA57.1 FMC

EMC²

Zynq
Processing System Programmable Logic

DDR3

ARM (Petalinux)
UDP Server

MicroBlaze
Controller

VDMA
HDMI in

HDMI out

Ethernet
PC (Windows)

UDP Client 1 2

3

4

5

Systems Product Manual EMC² Page 6 of 19 Last Edited: 05/07/2016 12:49:00

The HDMI in and HDMI out IP cores from Avnet (FMC-Imageon) used the AXI4-
stream Video protocol. The output resolution is set at 1280x720 and the video
frequency is set at 65MHz.
The Xilinx® LogiCORE™ IP AXI VDMA core provides the high-bandwidth direct
memory access between the DDR memory and the HDMI peripherals.
The software for the MicroBlaze runs as a bare-metal application and has no
external dependencies.
Some addresses in the DDR memory has been reserved for specific purposes. The
Microblaze on the PL and the UDP server communicates with each other using these
addresses. The Linux kernel has been compiled as such as it isn’t aware of these
addresses and therefore can’t run on this part of the memory. This was necessary to
avoid a system crash.

These registers are defined in the header file “source\SDK\include\
EMC2_HDMI_demo_cmd.h” included in the source code of both the MicroBlaze and
the UDP server. Also in this header file are the valid requests the MicroBlaze can
receive.

The table below describes these addresses:

Register address value description
CMD_ADDR 0x30000000 Address where the UDP server writes the

request (Error! Reference source not found.)
the MicroBlaze has to perform. The
MicroBlaze keeps polling this address until it
sees a new request. Then the MicroBlaze
executes the command. Once completed, the
MicroBlaze changes CMD_ADDR to
COMMAND_COMPLETE in order to
acknowledge the UDP server’s query. The UDP
will modify the register CMD_ADDR, only
after the MicroBlaze has successfully
completed its task. Thanks to this handshake
between the PL and the PS all the commands are
process in the order they are received and none
are lost.

DATA_ADDR 0x10000000 Address where the HDMI data are transferred to
and from.
The data are stored in 3 buffers in a circular
manner. Each buffer contains a video frame.

ERROR_ADDR 0x30000010
REG_ADDR 0x30000100 Address of the register containing the information

about the HDMI.
Figure 2: Registers

Systems Product Manual EMC² Page 7 of 19 Last Edited: 05/07/2016 12:49:00

The MicroBlaze can control the HDMI input and HDMI out by requesting a string of
actions to be performed. The MicroBlaze does so by writing to the register
CMD_ADDR. The table below lists the valid MicroBlaze requests:

Command name Value Description
FMC_IMAGEON 1 Command to initialise the routine for XPS_IIC

implementation and the FMC_IMAGEON driver
VIDEO_CLK_INIT 2 Command to initializes the Video Clock Synthesizer.

The CDCE913 has 3 outputs which are configured
as follows:
* Y1 => 74.25 MHz
* Y2 => off
* Y3 => off

VIDEO_CLK_CONFIG 3 Command to configure the Video Clock
Synthesizer's Y1 output.

HDMII_INIT 4 Command to initialize the HDMI Input Interface.
HDMIO_INIT 5 Command to initialize the HDMI Output Interface.
VDMA_OUT_INIT 7 Command to setup the read channel and start the

DMA engine to transfer.
VTC_OUT_CONFIG 8 Command to initialize and configure the VTC

generator.
HDMII_GET_LOCK 9 Command to check the HDMI input signal is locked.
VIDEO_IN_INFO 10 Command to write the HDMI input settings to the

information register.
VTC_IN_RESET 11 Command to initialize and reset the VTC detector.
VDMA_IN_STOP 12 Command to stop the DMA engine to write.
VDMA_IN_INIT 13 Command to setup the write channel and start the

DMA engine to transfer.
VDMA_INIT 14 Command to initialize DMA engines.
VDMA_OUT_STOP 15 Command to stop the DMA engine to read.
VDMA_IN_START 16 Command to start the DMA engine to write.
VDMA_OUT_START 17 Command to start the DMA engine to read.
Figure 3: MicroBlaze commands

It is also possible for the MicroBlaze to read the HDMI input/output settings.
The table below descripts the HDMI settings registers.

Address Parameter Address Parameter

Systems Product Manual EMC² Page 8 of 19 Last Edited: 05/07/2016 12:49:00

0x30000100 Video clock 1 0x30000148 Input locked
0x30000104 Output resolution 2 0x3000014C Input resolution 2
0x30000108 Output width 0x30000150 Input width
0x3000010C Output height 0x30000154 Input height
0x30000110 Output HDMI 0x30000158 Input HDMI
0x30000114 Output encrypted 0x3000015C Input encrypted
0x30000118 Output interlaced 0x30000160 Input interlaced
0x3000011C Output colour depth 0x30000164 Input colour depth
0x30000120 Output horizontal

active video
0x30000168 Input horizontal active

video
0x30000124 Output horizontal front

porch
0x3000016C Input horizontal front

porch
0x30000128 Output horizontal

synchronisation width
0x30000170 Input horizontal

synchronisation width
0x3000012C Output horizontal

synchronisation polarity
0x30000174 Input horizontal

synchronisation
polarity

0x30000130 Output horizontal back
porch

0x30000178 Input horizontal back
porch

0x30000134 Output vertical active
video

0x3000017C Input vertical active
video

0x30000138 Output vertical front
porch

0x30000180 Input vertical front
porch

0x3000013C Output vertical
synchronisation width

0x30000184 Input vertical
synchronisation width

0x30000140 Output vertical synchronisation polarity 0x30000188 Input vertical synchronisation
polarity

0x30000144 Output vertical back
porch

0x3000018C Input vertical back
porch

1 Video Clock: 0=25.175MHz, 1=27MHZ, 2=40MHz, 3=65MHz, 4=74.25MHz, 5=110MHz,
6=148.5MHz, 7=162MHz
2 Resolution: 0=VGA, 1=480P, 2=576P, 3=SVGA, 4=XGA, 5=720P, 6=SXGA, 7=1080P, 8=UXGA
Figure 4: HDMI setup registers

The firmware and MicroBlaze software for the Zynq (xc7z015clg485-1) were
developed in Vivado 2015.2 and its SDK. The PC software environment is Windows 7 64-bit or a later version.
The firmware source code is located in the folder:
“source\Vivado\EMC2_HDMI_demo_bit”.

Systems Product Manual EMC² Page 9 of 19 Last Edited: 05/07/2016 12:49:00

The MicroBlaze source code is located in the folder: “source\SDK\
EMC2_HDMI_demo_app”.

2.2 UDP server
The UDP server runs on Linux on the Zynq of the EMC².
Once the UDP server has successfully initialised a datagram socket, it waits for a
request from the UDP client. Once received, the request is parsed into a readable
format: command, address, size and data.
command: it can be of 2 types:

 a write command (“w”) when the UDP client requests to write size of data to
address.

 a read command (“r”) when the UDP client requests to read size of data from
address.

address: the DDR memory address to transfer the data to or from.
size: the size of the data to transfer.
data: data to transfer. The data can be of 2 types:

 a 32-bit word which is a command for the MicroBlaze to execute. In that case,
the command is written to a specific registry which is an address of the DDR
reserved for that purpose only.

 a video frame
Then the UDP server will access Linux’s memory resources so it can map the
physical addresses to virtual addresses.
In the case of a write request, the UDP server will send to the client an “Acq”
message if the request was successful.

The UDP server software has to be manually started from a serial console after each
system reboot.
The UDP server is written in C and was developed and compiled with Xilinx SDK.
The UDP server source code is located in the folder: “source\SDK\ UDP_Server”.

2.3 Petalinux
Petalinux 2014.4 is running on the ARM. Petalinux was setup and built on a 64-bit
Ubuntu 14.04 LTS machine (kernel 3.16.0-30-generic).
The Petalinux source code is located in the folder: “EMC2_Demo\source\Petalinux”.

2.4 UDP Client
A Graphical User Interface is used to interface to the EMC² Development Platform.
The GUI is a user-friendly way to control the HDMI interface on the EMC²-DP
through the Ethernet link.
Through this GUI, data transfers to and from the DDR memory inside the platform
are possible. Therefore, the GUI acts as a client and the Linux application on the

Systems Product Manual EMC² Page 10 of 19 Last Edited: 05/07/2016 12:49:00

ARM processor acts as a server. The network protocol UDP is used for this
communication.
A request is made of a type, an address, a length, a file or data, an IP address and a
port number.
The GUI uses XML files to load a group of commands, enabling the user to access
the platform in a quick and constant manner.
The GUI host application has been developed in C++ in the QT5 software
environment to make the deployment to other platforms possible.
The GUI source code is located in the folder:
“EMC2_Demo\source\UDP_Client\Demo”.

3 Software/firmware installation
All the files necessary to run or rebuild the EMC² demo are included in the
compressed file EMC²_demo.zipx.
Once uncompressed, the folder structure is has described in “Figure 5: Installation
structure”.

Systems Product Manual EMC² Page 11 of 19 Last Edited: 05/07/2016 12:49:00

Figure 5: Installation structure
The folder “bin” contains all the compiled and generated files necessary to run the
demo.
The folder “source” contains all the source files necessary to rebuild the demo.
Some subfolder are called “V1” or “V2”, they referred respectively to version 1 or
version 2 of the EMC² platform.

4 Running the demo
4.1 Hardware
4.1.1 Hardware requirement
For the demo you will need

 an EMC² board with a SEIC and a FMC Imageon board,
 a HDMI screen
 a computer running Windows 8
 cables: power, Ethernet, mini USB to USB, 2x HDMI.

Systems Product Manual EMC² Page 12 of 19 Last Edited: 05/07/2016 12:49:00

4.1.2 Hardware setup

1. Connect the power cable to the EMC² board but don’t switch the power on for
now.

2. Connect the USB cable between the EMC² board and the computer.
3. Connect the Ethernet cable between the EMC² board and the computer.
4. On the computer go to:

 “Control panel” -> “Network and sharing centre” ->”Change adapter settings”
- > “Ethernet” -> “Properties” -> “Internet Protocol 4” and change the IP
address to “192.168.0.14”.

5. Connect the computer screen to the HDMI in on the FMC board and the other
monitor to the HDMI out on the FMC board.

4.2 Software
1- Copy to the micro SD card (previously formatted as explained here:

http://www.wiki.xilinx.com/Prepare+Boot+Medium) the files: image.ub ,
BOOT.bin and UDP_Server.elf from the “bin/SD” folder.
Note that the “V1” folder contains the files for the EMC²_DP version 1, the “V2”
folder the files for the EMC²-DP version 2 and the folder “auto-init” the files
where the HDMI input and output are configured at boot up.

2- Insert the micro SD card and switch the power on to boot the EMC² board.
3- Open a serial console (for example Putty) with the following settings:

Speed: 115200
Data bits: 8
Stop bits: 1

Figure 6: Hardware setup

Systems Product Manual EMC² Page 13 of 19 Last Edited: 05/07/2016 12:49:00

Parity: None
Flow control: None

4- In the serial console, log on in Linux with the following credentials:
Name: root
Password: root

5- In the serial console type the following to run the UDP server:
>>mount /dev/mmcblk0p1 /mnt
>>cd /mnt
>>./UDP_Server.elf

Figure 7: Serial console settings

Systems Product Manual EMC² Page 14 of 19 Last Edited: 05/07/2016 12:49:00

Figure 8: UDP client running

6- On the computer open the UDP client “bin/SmtUDPClient/SmtUDPClient.exe”

Systems Product Manual EMC² Page 15 of 19 Last Edited: 05/07/2016 12:49:00

Figure 9: UDP server running

7- In the GUI go to “File” -> “Load file” and browse to the file

bin/SmtUDPClient/RunTest.xml

8- Press the button “Send All”. A series of test should be performed. Including
HDMI input displayed on the HDMI output, also colour written in DDR through
Ethernet being displayed on the HDMI out screen. The video output resolution is
set at 1280x720.

Systems Product Manual EMC² Page 16 of 19 Last Edited: 05/07/2016 12:49:00

Figure 10: Demo running

Note: The file commands.xml can be used to display in the UDP client a set of
commands to send to the MicroBlaze. For example, commands to read the HDMI
input and output status and information.

5 Building the demo
All the source files and the project files are included in this demo. However if a
project rebuild is needed, please follow the steps below.

5.1 Platform hardware
The EMC² platform needs to be added to the Xilinx folder.
To do so:

 Go to the folder “C:\Xilinx\ Vivado\2015.2\data\boards\board_files”
 Copy the folder “EMC2_Demo\platform”

5.2 Firmware
To rebuild the bitstream, open the project file
“EMC2_Demo\source\Vivado\EMC2_HDMI_demo_bit\EMC2_HDMI_demo_bit.xpr” in
Vivado.
Next set the Vivado Repositories:

 go to “Project settings”->”IP”
 Add avnet_fmc_imageon_cores folder to the local repositories then press OK

Systems Product Manual EMC² Page 17 of 19 Last Edited: 05/07/2016 12:49:00

Then select “build Bitstream”.

To build the bitstream with the MicroBlaze application embedded inside, open Xilinx
SDK, go to “Xilinx Tools”-> “Program FPGA”. In the “Program FPGA” window, in
“Software Configuration”, select the EMC2_HDMI_demo_app.elf file for the
microBlaze processor.
The resulting bitstream file can be found in the platform directory:
EMC2_Demo\source\SDK\EMC2_HDMI_demo_platform.

5.3 MicroBlaze application and UDP server
There are 2 options for the system initialisation: at boot time or manually. For the
system to get initialize at boot up, the value of “#if” need to be changed to 1 in the
MicroBlaze source file:
“EMC2_Demo\source\SDK\EMC2_HDMI_demo_app\src\fmc_imageon_hdmi_framebuf
fer.c”:

// auto initialize the system #if 0
 if (test<17) { if (test==7) { while (sleep!=10000000) sleep++; sleep = 0; } if (test==13) { while (sleep!=10000000) sleep++; sleep = 0; } *pCmd= pCmdTest[test]; test++; } #endif

To rebuild the MicroBlaze application, the FSBL (First Stage Boot Loader) and the UDP server, open the XILINX SDK workspace which is in the folder
EMC2_Demo\source\SDK.
In Xilinx SDK, you need to add the FMC Imageon repository. To do so:

 Go to “Xilinx Tools” -> “Repositories”
 Add avnet_fmc_imageon_cores folder to the local repositories then press OK

Then select the FMC Imageon library:
 Right click the project board support package (EMC2_HDMI_demo_app_bsp)
 Select Overview in the top left corner of the BSP window
 Select the fmc_iic_sw and fmc_imageon_sw libraries.

Go to “Project” -> “Build All”.

5.4 Boot.bin
To build the “boot.bin” file:

 Open Xilinx SDK

Systems Product Manual EMC² Page 18 of 19 Last Edited: 05/07/2016 12:49:00

 Go to “Xilinx Tools” -> “Create Zynq Boot Image”
 Select “Import from existing BIF file”
 In “Import BIF file path” browse to “EMC2_Demo\source\BIF\v2\output.bif”
 Select the right files in that order: FSBL.elf, *.bit, u-boot.elf
 Then press “Create Image”.

5.5 Petalinux
To rebuild the Petalinux project you need a Linux machine.
Create a folder “EMC2_HDMI_demo” and a subfolder “hwdef”. In the subfolder
“hwdef”, copy the hardware description file exported by Vivado
“design_1_wrapper.hdf”

Go to the folder where Petalinux is installed and type:
>>source settings.sh

In a terminal window, cd to the EMC2_HDMI_demo folder, then create a Petalinux
project and configure it:
>>petalinux-create --type project --template zynq --name plnx-project
>>cd hwdef
>>petalinux-config --get-hw-description –p ../plnx-project

In “Subsystem AUTO hardware settings” select “Ethernet settings” then uncheck
“Obtain IP address automatically” and set it to “192.168.0.10”

In the folder, “EMC2_HDMI_demo/plnx-project/subsystem/linux/configs”, add the
Ethernet configuration in the file “system-top.dts” as such:

/dts-v1/; /include/ "system-conf.dtsi" / { chosen { bootargs = "console=ttyPS0,115200 root=/dev/mmcblk0p2 rw earlyprintk rootfstype=ext4 rootwait devtmpfs.mount=1"; }; }; &gem0 { phy-handle = <&phy0>; ps7_ethernet_0_mdio: mdio { #address-cells = <1>; #size-cells = <3>; phy0: phy@0 { compatible = "marvell,88e1512"; device_type = "ethernet-phy"; reg = <0>; }; }; };

Systems Product Manual EMC² Page 19 of 19 Last Edited: 05/07/2016 12:49:00

Back in the terminal windows, build the project:
>>petalinux-build

The file “image.ub” is in the folder “EMC2_HDMI_demo/plnx-project/images.linux”.

5.6 Uboot environment
In order for the system to run properly the following uboot environment vaiables
need to be set.

kernel_img=image.ub
netstart=0x01000000
sdboot=echo boot Petalinux; mmcinfo && fatload mmc 0 ${netstart}
${kernel_img} && bootm

6 References
Petalinux: http://www.xilinx.com/products/design-tools/embedded-
software/petalinux-sdk.html
Vivado : http://www.xilinx.com/products/design-tools/vivado.html
SDK : http://www.xilinx.com/products/design-tools/embedded-software/sdk.html
QT: http://www.qt.io
FMC-IMAGEON from Avnet : https://products.avnet.com/shop/en/ema/kits-and-
tools/development-kits/3074457345623596557
Trenz SoC ZYNQ module : http://www.trenz-electronic.de/products/fpga-boards/trenz-electronic/te0715-zynq.html
EMC2 : http://www.sundance.technology/som-cariers/pc104-boards/emc2-dp/
Source files : http://ftp2.sundance.com/Pub/Support_Files/Tulipp/EMC2_Demo.zip

